En savoir plus

A propos des cookies

Qu’est-ce qu’un « cookie » ?

Un "cookie" est une suite d'informations, généralement de petite taille et identifié par un nom, qui peut être transmis à votre navigateur par un site web sur lequel vous vous connectez. Votre navigateur web le conservera pendant une certaine durée, et le renverra au serveur web chaque fois que vous vous y re-connecterez.

Différents types de cookies sont déposés sur les sites :

  • Cookies strictement nécessaires au bon fonctionnement du site
  • Cookies déposés par des sites tiers pour améliorer l’interactivité du site, pour collecter des statistiques

> En savoir plus sur les cookies et leur fonctionnement

Les différents types de cookies déposés sur ce site

Cookies strictement nécessaires au site pour fonctionner

Ces cookies permettent aux services principaux du site de fonctionner de manière optimale. Vous pouvez techniquement les bloquer en utilisant les paramètres de votre navigateur mais votre expérience sur le site risque d’être dégradée.

Par ailleurs, vous avez la possibilité de vous opposer à l’utilisation des traceurs de mesure d’audience strictement nécessaires au fonctionnement et aux opérations d’administration courante du site web dans la fenêtre de gestion des cookies accessible via le lien situé dans le pied de page du site.

Cookies techniques

Nom du cookie

Finalité

Durée de conservation

Cookies de sessions CAS et PHP

Identifiants de connexion, sécurisation de session

Session

Tarteaucitron

Sauvegarde vos choix en matière de consentement des cookies

12 mois

Cookies de mesure d’audience (AT Internet)

Nom du cookie

Finalité

Durée de conservation

atid

Tracer le parcours du visiteur afin d’établir les statistiques de visites.

13 mois

atuserid

Stocker l'ID anonyme du visiteur qui se lance dès la première visite du site

13 mois

atidvisitor

Recenser les numsites (identifiants unique d'un site) vus par le visiteur et stockage des identifiants du visiteur.

13 mois

À propos de l’outil de mesure d’audience AT Internet :

L’outil de mesure d’audience Analytics d’AT Internet est déployé sur ce site afin d’obtenir des informations sur la navigation des visiteurs et d’en améliorer l’usage.

L‘autorité française de protection des données (CNIL) a accordé une exemption au cookie Web Analytics d’AT Internet. Cet outil est ainsi dispensé du recueil du consentement de l’internaute en ce qui concerne le dépôt des cookies analytics. Cependant vous pouvez refuser le dépôt de ces cookies via le panneau de gestion des cookies.

À savoir :

  • Les données collectées ne sont pas recoupées avec d’autres traitements
  • Le cookie déposé sert uniquement à la production de statistiques anonymes
  • Le cookie ne permet pas de suivre la navigation de l’internaute sur d’autres sites.

Cookies tiers destinés à améliorer l’interactivité du site

Ce site s’appuie sur certains services fournis par des tiers qui permettent :

  • de proposer des contenus interactifs ;
  • d’améliorer la convivialité et de faciliter le partage de contenu sur les réseaux sociaux ;
  • de visionner directement sur notre site des vidéos et présentations animées ;
  • de protéger les entrées des formulaires contre les robots ;
  • de surveiller les performances du site.

Ces tiers collecteront et utiliseront vos données de navigation pour des finalités qui leur sont propres.

Accepter ou refuser les cookies : comment faire ?

Lorsque vous débutez votre navigation sur un site eZpublish, l’apparition du bandeau « cookies » vous permet d’accepter ou de refuser tous les cookies que nous utilisons. Ce bandeau s’affichera tant que vous n’aurez pas effectué de choix même si vous naviguez sur une autre page du site.

Vous pouvez modifier vos choix à tout moment en cliquant sur le lien « Gestion des cookies ».

Vous pouvez gérer ces cookies au niveau de votre navigateur. Voici les procédures à suivre :

Firefox ; Chrome ; Explorer ; Safari ; Opera

Pour obtenir plus d’informations concernant les cookies que nous utilisons, vous pouvez vous adresser au Déléguée Informatique et Libertés de INRAE par email à cil-dpo@inrae.fr ou par courrier à :

INRAE
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan cedex - France

Dernière mise à jour : Mai 2021

Menu Logo Principal Institut Agro Montpellier LEPSE membre de Montpellier Université d'Excellence Labex AGRO Institut Carnot DigitAg

Site pour l\'UMR LEPSE

Publications Pierre MARTRE

Publications Pierre MARTRE
Actualités : Wang E, Martre P et al. (2017) The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, doi: 10.1038/nplants.2017.102
Covers
GoogleScholarLogo_small
ResearchGate_Logo_small
ORCID_small

                        

À paraître

[120] de Souza Nóia Júnior R, Ewert F, Webber H, Martre P, Hertel TW, van Ittersum MK, Asseng S (na) Needed global wheat stock and crop management in response to the Ukraine war. Submitted.

[119] Noia Junior R, Deswarte JC, Cohan, JP; Martre P, Van der Velde M, Lecerf R, Ewert F, Webber H, Slafer G, Ruane A, Asseng S (na) The extreme 2016 wheat yield failure in western Europe. Submitted

[118] Dueri S, Brown H, Asseng S, Ewert F, Webber4 H, George M, Craigie R, Guarin JR, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Mujica GB, Cammarano D, Chen Y, Dumont B, Rezaei EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Kersebaum KC, Nendel C, Olesen JE, Padovan G , Palosuo T, Priesack E, Pullens JWM, Rodríguez A, Rötter RP, Ruiz Ramos M, Semenov MA, Senapati N, Siebert S, Kumar Srivastava A, Stöckle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L, Zhao C, Zhao J, Zhao Z, Zhu Y, Martre P (2022). Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. Journal of Experimental Botany, in press, https://doi.org/10.1093/jxb/erac221.

[117] Dueri S, Brown H, Asseng S, Ewert F, Webber4 H, George M, Craigie R, Guarin JR, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Mujica GB, Cammarano D, Chen Y, Dumont B, Rezaei EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Kersebaum KC, Nendel C, Olesen JE, Padovan G , Palosuo T, Priesack E, Pullens JWM, Rodríguez A, Rötter RP, Ruiz Ramos M, Semenov MA, Senapati N, Siebert S, Kumar Srivastava A, Stöckle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L, Zhao C, Zhao J, Zhao Z, Zhu Y, Martre P (na). Winter wheat experiments to optimize sowing dates and densities in a high-yielding environment in New Zealand: Field experiments and AgMIP-Wheat multi-model simulations. Submitted.

[116] Guarin JR, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reynolds M, Molero G, Miralles D, Garcia G, Slafer GA, Giunta F, Pequeno DNL, Stella T, Ahmed M, Alderman PD, Basso B, Berger AG, Bindi M, Mujica GB, Cammarano D, Chen Y, Dumont B, Rezaei EE, Fereres E, Ferrise R, Gaiser T, Gao Y, Garcia-Vila M, Gayler S, Hochman Z, Hoogenboom G, Hunt LA, Kersebaum KC, Koch M, Nendel C, Olesen JE, Palosuo T, Priesack E, Pullens JWM, Rodríguez A, Rötter RP, Ruiz Ramos M, Semenov MA, Senapati N, Siebert S, Srivastava AK, Stöckle C, Supit I, Tao F, Thorburn P, Wang E, Weber TKD, Xiao L, Zhang Z, Zhao C, Zhao J, Zhao Z, Zhu Y, Asseng S (na) Current potential global production of wheat. Submitted.

[115] Fang L, Martre P, Jin K, Du X, van der PuttenP, Yin X, Struik P (na) Neglecting acclimation of photosynthesis under drought can cause significant errors in predicting leaf photosynthesis in wheat. Submitted.

[114] Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, Müller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler AK, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, J. O’Leary G, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (na) AgMIP-Wheat multi-model ensemble simulations on climate change impact and adaptation for 60 representative global locations. Submitted.

2022

[113] Fang L, Yin X, van der Putten P, Struik P (2022) Drought exerts a greated influence than growth temperature on the temperature response of leaf day respiratoin in wheat (Triticum aestivum). Plant, Cell and Environment, 45: 2062–2077 . https://doi.org/10.1111/pce.14324.

[113] Senapati N, Semenov MA, Halford NG, Hawkesford MJ, Asseng S, Cooper M, Ewert F, van Ittersum MK, Martre P, Olesen JE, Reynolds M, Rötter RP, Webber H (2022) Global wheat production could be doubled by closing the genetic yield gap. Nature Food, https://doi.org/10.1038/s43016-022-00540-9.

2021

[111] Barillot R, De Swaef T, Combes D, Durand JL, Escobar-Gutiérrez AJ, Martre P, Perrot C, Roy E, Frak E (2021). Leaf elongation response to blue light is mediated by stomatal-induced variations in plant transpiration in Festuca arundinacea. Journal of Experimental Bontany, 72: 2642-2656. doi.org/10.1093/jxb/eraa585.

[110] de Souza Nóia Júnior R, Olivier L, Ruane AC, Martre P, Ewert F, Webber H, van der Velde M, Ben-Ari T, Finger R, Asseng S (2021) Extreme lows of wheat production in Brazil. Environmental Research Letters, 16: 104025. doi.org/10.1088/1748-9326/ac26f3.

[109] Hoogenboom G, Justes E, Pradal C, Launay M, Asseng S, Ewert F, Martre P (2021) iCROPM 2020: Crop Modeling for the Future. The Journal of Agricultural Science, in press. 10.1017/S0021859621000538.

[108] Leveau S, Parent B, Zaka S, Martre P (2021) Ploidy, phylogeny and breeding structure the genetic variability of leaf growth and development and responses to temperature in wheat relatives. Journal of Experimental Bontany, 72: 7580–7593. doi.org/10.1093/jxb/erab431

[107] Liu S, Baret F, Abichou M, Manceau L, Andrieu B, Weiss M, Martre P (2021) Importance of the description of light interception in crop growth models. Plant Physiology, 186: 977-997. doi.org/10.1093/plphys/kiab113.

[106] Midingoyi CA, Pradal C, Enders A, Fumagalli D, Raynal H, Donatelli M, Athanasiadis IN, Porter C, Hoogenboom G, Holzworth D, Garcia F, Thorburn P, Martre P (2021) Crop2ML: An open-source multi-language modeling framework for the exchange and reuse of crop model components. Environmental Modelling & Software, 142: 105055. doi.org/10.1016/j.envsoft.2021.105055.

[105] Stella T, Webber H, Olesen JE, Ruane AC, Fronzek S, Bregaglio S, Mamidanna S, Bindi M, Collins B, Faye B, Ferrise R, Fodor N, Gabaldón-Leal C, Jabloun M, Kersebaum KC, Lizaso JI, Lorite IJ, Manceau L, Martre P, Nendel C, Rodríguez A, Ruiz-Ramos M, Semenov MA, Stratonovitch P, Ewert F (2021) Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 16, 104033.doi.org/10.1088/1748-9326/ac2196.

2020

[104] Bonnot T, Martre P, Hatte V, Dardevet M, Leroy P, Bénard C, Falagán N, Martin-Magniette ML, Deborde C, Moing A, Gibon Y, Pailloux M, Bancel E, Ravel C (2020) Omics data reveal putative regulators of Einkorn grain protein composition under sulphur deficiency. Plant Physiology, 183: 501-516. doi:10.1104/pp.19.00842.

[103] Guarin JR, Asseng A, Martre P, Bliznyuk N (2020) Testing a crop model with extreme low yields from historical district records. Field Crops Research, 183: 501-516. doi:10.1016/j.fcr.2018.03.006.

[102] Midingoyi CA, Pradal C, Athanasiadis I, Donatelli M, Enders A, Fumagalli D, Garcia F, Holzworth D, Hoogenboom G, Porter C, Raynal H, Thorburn P, Martre P (2020) Reuse of process-based models: automatic transformation to many languages and simulation platforms. Plants in silico, diaa007. doi:10.1093/insilicoplants/diaa007.

[101] Padovan G, Martre P, Semenov MA, Masoni A, Bregaglio S, Ventrella D, Lorite IJ, Santos C, Bindi M, Ferrise R, Dibari C (2020) Understanding effects of genotype × environment × sowing window interactions for durum wheat in the Mediterranean basin. Field Crops Research, 259: Article 107969. doi:10.1016/j.fcr.2020.107969.

[100] Tao F, Palosuo T, Rötter RP, Hernández Díaz-Ambrona CG, Mínguez MI, Semenov MA, Kersebaum KC, Cammarano DC, Specka X, Nendel c, Srivastava AK, Ewert F, Padovan G, Ferrise R, Martre P, Rodríguez L, Ruiz-Ramos M, Gaiser T, Höhn JK, Salo T, Dibari C, Schulman AH (2020). Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models. Agricultural and Forest Meteorology, Article: 107851. doi:10.1016/j.agrformet.2019.107851.

[99] Webber H, Cooke D, Ewert F, Olesen JE, Fronzek S, Ruane AC, Martre P, Ababaei B, Bindi M, Ferrise R, Fodor N, Gabaldón-Leal C, Gaiser T, Jabloun M, Kersebaum KC, Lizaso JI, Manceau L, Moriondo M, Nendel C, Rodríguez A, Ruiz-Ramos M, Semenov MA, Stella T, Stratonovitch P, Trombi G (2020) Pan-European multi-crop model ensemble projections of climate change impact on wheat and grain maize. Open Data Journal for Agricultural Research, 6: 21-270. doi:10.18174/odjar.v6i0.16326.

2019

[98] Asseng S, Martre P, Ewert F (2019) Crop simulation model inter-comparison and improvement. In Kenneth J Boote (Ed.), Advances in crop modelling for a sustainable agriculture. London: Burleigh Dodds Science Publishing. doi:10.1201/9780429266591.

[97] Asseng S, Martre P, Ewert F, Dreccer M, Beres B, Reynolds M, Braun H, Langridge P, Le Gouis J, Salse J, Baenziger S (2019) Model-driven multi-disciplinary global research to meet future needs: The case for 'improving radiation use efficiency to increase yield'. Crop Science, 59: 1-7. doi.10.2135/cropsci2018.09.0562.

[96] Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C,Motzo R, Giunta F, Babar A, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H,. Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler AK, Liu B, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Global Change Biology, 25:155-173.doi10.1111/gcb.14481.

[95] Bancel E, Bonnot T, Davanture M, Alvarez, Zivy M, Martre P, Dejean S, Ravel C (2019) Proteomic data integration highlights central actors involved in einkorn (Triticum monococcum ssp. monococcum) grain filling in relation to grain storage protein composition. Frontiers in Plant Science, 10: 832. doi.10.3389/fpls.2019.00832.

[94] Baumont M, Parent B, Manceau L, Brown H, Driever SM, Muller B, Martre P (2019) Experimental and modeling evidence of carbon-limited leaf appearance rate for spring and winter wheat. Journal of Experimental Botany, 70: 2449–2462. doi.org/10.1093/jxb/erz012.

[93] Boudet J, Merlino M, Plessis A, Gaudin JC, Dardevet M, Perrochon S, Alvarez D, Risacher T, Martre P, Ravel C (2019). The bZIP transcription factor SPA Heterodimerizing Protein represses glutenin synthesis in Triticum aestivum. The Plant Journal, 97: 858-871, doi:10.1111/tpj.14163.

[92] Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, Müller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler AK, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, J. O’Leary G, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (2019) Global wheat production with 1.5 and 2.0°C above pre-industrial warming. Global Change Biology, 25: 1428-1444. doi:10.1111/gcb.14542.

[91] Liu S, Martre P, Buis S, Abichou M, Andrieu B, Baret F (2019) Estimation of plant and canopy architectural traits using Digital Plant Phenotyping Platform. Plant Physiology, 181: 881-890. doi.org/10.1104/pp.19.00554.

[90] Muller B, Martre P (2019) Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics. Journal of Experimental Botany, 70: 2339–2344. doi.org/10.1093/jxb/erz175.

[89] Porter JR, Challinor AJ, Henriksen CB, Howden SM, Martre P, Smith P (2019) IPCC, agriculture and food – A case of shifting cultivation and history. Global Change Biology, 25: 2518-2529. doi.10.1111/gcb.14700.

[88] Rincent R, Malosetti M, Touzy G, Behnam Ababaei, Mini A, Bogard M, Martre P, Le Gouis J, van Eeuwijk FA (2019) Using crop growth model stress covariates and AMMI decomposition to better predict genotype by environment interactions. Theoretical and Applied Genetics, 132: 3399-3411. doi:10.1007/s00122-019-03432-y.

2018

[87] Basso B, Dumont B, Shcherbak I, Asseng S, Bassu S, Biernath C, Boote K, Cammarano D, de Sanctis G, Durand J, Ewert F, Gayler S, Grace P, Grant R, Kent J, Martre P, Nendel C, Paustian K, Priesack E, Ripoche D, Ruane A, Thorburn P, Hatfield J, Jones J, Rosenzweig C (2018) Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agricultural & Environmental Letters, 3: 180026. doi:10.2134/ael2018.05.0026.

[86] Kimball BA, White JW, Wall GW, Ottman MJ, Martre P (2018) Wheat response to a wide range of temperatures, as determined from the Hot Serial Cereal (HSC) Experiment. Open Data Journal for Agricultural Research, 4: 16-21. doi:10.18174/odjar.v4i0.15829.

[85] Martre P, Dambreville A (2018) A model of wheat leaf coordination to scale-up leaf expansion from the organ to the canopy. Plant Physiology, 176: 704-716. doi:10.1104/pp.17.00986.

[84] Martre P, Derory J (2018) Rendement du blé. Le stress hydrique: principal facteur limitant en Europe. Perspectives Agrocioles 453: 38-40.

[83] Martre P, Kimball BA, Ottman MJ, Wall GW, White JW, Asseng S, Ewert F, Cammarano D, Maiorano A, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Dumont B, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum KC, Koehler A-K, Müller C, Kumar SN, Liu B, Lobell DB, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Rezaei EE, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wang E, Wolf J, Zhao Z, and Zhu Y (2018) The Hot Serial Cereal Experiment for modeling wheat response to temperature: field experiments and AgMIP-Wheat multi-model simulations. Open Data Journal for Agricultural Research, 4:28-34. doi:10.18174/odjar.v4i0.15830.

[82] Parent B, Leclere M, Lacube S, Semenov MA, Welcker C, Martre P, Tardieu F (2018) Maize yields over Europe may increase in spite of climate change with an appropriate use of the genetic variability of flowering time. Proceedings of the National Academy of Science of the United States of America, 115:10642-10647. doi:10.1073/pnas.1720716115.

[81] Tao F, Rötter R, Palosuo T, Gregorio Hernández Díaz-Ambrona C, Mínguez-Tudela MI, Semenov MA, Kersebaum C, Nendel C, Specka X, Hoffmann H, Ewert F, Dambreville A, Martre P, Rodriguez L, Ruiz Ramos M, Gaiser T, Höhn J, Salo T, Ferrise R, Bindi M, Cammarano D, Schulman A (2018) Contribution of crop model structure, parameters and climate projections to uncertainties in climate change impact assessments. Global Change Biology, 24: 1291-1307. doi:10.1111/gcb.14019.

[80] Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont D, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler AK, Maiorano A, Minoli S, Müller C, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, and Zhang Z (2018) Multi-model ensembles improve predictions of crop-environment-management interactions. Global Change Biology, 24: 5072-5083. doi:10.1111/gcb.14411.

[79] Webber H, Ewert F, Olesen JE, Müller C, Fronzek S, Ruane A, Bourgault M, Martre P, Ababaei B, Bindi M, Ferrise R, Finger R, Fodor N, Gabaldón-Leal C, Gaiser T, Jabloun M, Kersebaum KC, Lizaso JI, Lorite I, Manceau C, Moriondo M, Nendel C, Rodríguez A, Ruiz Ramos M, Semenov MA, Siebert S, Stella T, Stratonovitch P, Trombi G, Wallach G (2018) Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9, Article 4249. doi:10.1038/s41467-018-06525-2.

[78] Webber H, White JW, Kimball BA, Ewert F, Asseng S, Eyshi Rezaei E, Pinter Jr. P, Hatfield JL, Reynolds MP, Ababaei B, Bindi M, Doltra J, Ferrise R, Kage H, Kassie BT, Kersebaum KC, Luig A, Olesen JE, Semenov MA, Stratonovitch P, Ratjen AM, LaMorte RL, Leavitt SW, Hunsaker DJ, Wall GW, Martre P (2018) Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 216: 75-88. doi:10.1016/j.fcr.2017.11.005.

2017

[77] Bonnot T, Bancel E, Alvarez D, Davanture M, Boudet J, Pailloux M, Zivy M, Ravel C, and Martre P (2017) Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. Monococcum. The Plant Journal, 91: 894-910.doi:10.1111/tpj.13615.

[76] Chenu K, Porter RP, Martre P, Basso B, Chapman SC, Ewert F, Bindi M, Asseng S (2017) Contribution of crop models to adaptation in wheat. Trends in Plant Science, 22: 472-490. doi:10.1016/j.tplants.2017.02.003.

[75] Ly D, Chenu K, Gauffreteau A, Rincent R, Huet S, Gouache D, Martre P, Bordes J, Charmet G (2017) Nitrogen nutrition index predicted by a crop model improves the genomic prediction of grain number for a bread wheat core collection. Field Crops Research 214:331-340. doi:10.1016/j.fcr.2017.09.024.

[74] Maiorano A, Martre P, Asseng S, Ewert F, Müller C, Rötter RP, Ruane AC, Semenov MA, Wallach D, Wang E, Alderman PD, Kassie BT, Biernath C, Basso B, Camarrano D, Challinor AJ, Doltra J, Dumont B, Eyshi Rezaei E, Gayler S, Kersebaum KC, Kimball BA, Koehler AK, Liu B, O’Leary GJ, Olesen JE, Ottman MJ, Priesack E, Reynolds MP, Stratonovitch P, Streck T, Thorburn PJ, Waha K, Wall GW, White JW, Zhao Z, Zhu Y (2017) Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 202: 5-20. doi:10.1016/j.fcr.2016.05.001.

[73] Martre P, Reynolds MP, Asseng S, Ewert F, Alderman PD, Cammarano D, Maiorano A, Ruane AC, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Dumont B, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum KC, Koehler AK, Müller C, Kumar SN, Liu B, Lobell DB, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wang E, White JW, Wolf J, Zhao Z, and Zhu Y (2017) The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations. Open Data Journal for Agricultural Research, 3: 23-28. doi:10.18174/odjar.v3i1.15766.

[72] Martre P, Yin X, Ewert F (2017) Modeling crops from genotype to phenotype in a changing climate. Field Crops Research 202: 1-4. doi:10.1016/j.fcr.2017.01.002.

[71] Ruane AC, Rosenzweig C, Asseng S, Boote KJ, Elliott J, Ewert F, Jones J, Martre P, McDermid S, Müller C, Thorburn P (2017) An AgMIP framework for improved agricultural representation in IAMs. Environmental Research Letters, 12: article No. 125003. doi:10.1088/1748-9326/aa8da6.

[70] Tao F, Rötter RP, Palosuo T, Díaz-Ambrona CGH, Inés Mínguez M, Semenov MA, Kersebaum KC, Nendel C, Cammarano D, Hoffmann H, Ewert F, Dambreville A, Martre P, Rodríguez L, Ruiz-Ramos M, Gaiser T, Höhn JG, Salo T, Ferrise R, Bindi M, Schulman AH (2017) Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 82: 144-162. doi:10.1016/j.eja.2016.10.012.

[69] Webber H, Martre P, Asseng S, Kimball B, White J, Ottman M, Wall G, De Sanctis G, Doltra J, Grant R, Kassie B, Maiorano A, Olesen JE, Ripoche D, Eyshi Rezaei E, Semenov MA, Stratonovitch P, Ewert F (2017) Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: a multi-model comparison.  Field Crops Research, 2002: 21-33. doi:10.1016/j.fcr.2015.10.009.

[68] Wang E*, Martre P*, Asseng S, Ewert F, Zhao Z, Maiorano A, Rötter RP, Kimball BA, Ottman MJ, Wall GW, White JW, Aggarwal PK, Alderman PD, Anothai J, Basso B, Biernath C, Cammarano C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Liu L, Kumar SN, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Reynolds MP, Rezaei EE, Ripoche D, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wallach D, Wolf J, Zhu Y (2017) The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 3: Article number: 17102. doi:10.1038/nplants.2017.102 (*this authors contributed equally to the work).

[67] Zhao C*, Liu B*, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Liu Z, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Yao Y, Zhu Y, Zhu Z, Asseng (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Science of the United States of America, 114: 9326-9331. doi:10.1073/pnas.1701762114. (*this authors contributed equally to the work).

2016

[66] Cammarano D, Rötter RP, Asseng S, Ewert F, Wallach D, Martre P, Hatfield JL, Jones JW, Rosenzweig C, Ruane AC, Boote KJ, Thorburn PJ, Kersebaum KC, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Heng L, Hooker JE, Hunt LA, Ingwersen J, Izaurralde RC, Müller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Osborne TM, Priesack E, Ripoche D, Steduto P, Stöckle CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, White JW, Wolf J (2016) Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 198: 80-92. doi:10.1016/j.fcr.2016.08.015.

[65] Liu B, Asseng S, Muller C, Ewert F, Elliott J, Lobell DB, Martre P, Ruane AC, Wallach D, Jones JW, Rosenzweig C, Aggarwal PK, Alderman PD, Anothai J, Basso B, Biernath C, Cammarano D, Challinor A, Deryng D, Sanctis GD, Doltra J, Fereres E, Folberth C, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Kimball BA, Koehler A-K, Kumar SN, Nendel C, Oleary G, Olesen JE, Ottman MJ, Palosuo T, Prasad PVV, Priesack E, Pugh TAM, Reynolds M, Rezaei EE, Rotter RP, Schmid E, Semenov MA, Shcherbak I, Stehfest E, Stockle CO, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wall GW, Wang E, White JW, Wolf J, Zhao Z, Zhu Y (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6:1130–1136. doi:10.1038/nclimate3115.

[64] Neghliz H, Cochard H, N Brunel, Martre P (2016) Ear rachis xylem occlusion and associated loss in hydraulic conductance coincide with the end of grain filling for wheat. Frontiers in Plant Science, 7: 920. doi: 10.3389/fpls.2016.00920.

[63] Ruane AC, Hudson NI, Asseng S, Camarrano D, Ewert F, Martre P, Boote KJ, Thorburn PJ, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant RF, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Naresh Kumar S, Müller C, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche E, Rötter RP, Semenov MA, Shcherbak I, Steduto P, Stöckle CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, and Wolf J (2016) Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 81: 86-10. doi:10.1016/j.envsoft.2016.03.008

2015

[62] Asseng S, Ewert F, Martre P, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PT, Rötter RP, Cammarano D, Brisson N, Basso B, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf (2015) Benchmark data set for wheat growth model: observed and AgMIP multi-model simulations. Open Data Journal for Agricultural Research, 1: 1-5. doi:10.17026/dans-zb6-6fvq

[61] Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E , Eyshi Rezaei E, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nature Climate Change, 5: 143–147. doi:0.1038/nclimate2470

[60] Bancel E, Bonnot T, Davanture M, Branlard G, Zivy M, Martre P (2015). Proteomic approach to identify nuclear proteins in wheat grain. Journal of Proteome Research, 14: 4432-4439. doi:10.1021/acs.jproteome.5b00446. 

[59] Bonnot T, Bancel E, Chambon C, Branlard G, Martre P (2015). Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain. Frontiers in Plant Science, 6: Article 905. doi:10.3389/fpls.2015.00905.

[58] Dai Z, Plessis A, Vincent J, Duchateau N, Besson A, Dardevet M, Prodhomme D, Gibon Y, Hilbert G, Pailloux M, Ravel C, Martre P (2015) Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. The Plant Journal, 83: 326–343. doi:10.1111/tpj.12881.

[57] Deswarte JC, Lorgeou J, Martre P (2015) Elaboration des protéines dans le grain. Des mécanismes de mieux en mieux connus. Perspectives Agricole, 418: 59-61.

[56] Ferrise R, Bindi M, Martre P (2015). Grain filling duration and glutenin polymerization under variable nitrogen supply and environmental conditions for durum wheat. Field Crops Research, 17: 23-31. doi:10.1016/j.fcr.2014.10.016

[55] Makowski D, Asseng S, Ewert F, Bassu S, Durand J-L, Li T, Martre P, Adam M, Aggarwal PK, Angulo C, Baron C, Basso B, Bertuzzi P, Biernath P, H Boogaard, Boote KJ, Bouman B, Bregaglio S, Brisson N, Buis S, Cammarano D, Challinor AJ, Confalioneri R, Sjaak Conijn JG, Corbeels M, Deryng D, De Sanctis G, Doltra J, Fumoto T, Gaydon D, Gayler S, Goldberg RA, Grant RF, Grassini P, Hatfield JL, Hasegawa T, Heng L, Hoek S, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Jongschaap REE, Jones JW, Kemanian RA, Kersebaum KC, Kim SH, Lizaso J, Marcaida III M, Müller C, Nakagawa H, Naresh Kumar S, Nendel C, O'Leary JG, Olesen JE, Oriol P, Osborne TM, Palosuo T, Pravia MV, Priesack E, Ripoche D, Rosenzweig C, Ruane AC, Ruget F, Semenov MA, Shcherbak I, Singh B, Singh U, Soo HK, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tang L, Tao F, Texeira E, Thorburn P, Timlin D, Travasso M, Rötter RP, Waha K, Wallach D, White JW, Wilkens P, Williams JR, WolfJ, Yin X, Yoshida H, Zhang Z, Zhu Y (1015) A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 214-215: 483-493. doi:10.1016/j.agrformet.2015.09.013

[54] Makowski D, Asseng S, Ewert F, Bassu S, Durand JL, Martre P, Adam M, Aggarwal PK, Angulo C, Baron C, Basso B, Bertuzzi P, Biernath C, Boogaard H, Boote KJ, Brisson N, Cammarano D, Challinor AJ, Sjaak C, Corbeels M, Deryng D, De Sanctis G, Doltra J, Gayler S, Goldberg R, Grassini P, Hatfield JL, Heng L, Hoek S, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Jongschaap R, Jones JW, Kemanian AR, Kersebaum KC, Lizaso J, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Pravia MV, Priesack E, Ripoche D, Rosenzweig C, Ruane A, Sau F, Semenov MA, Shcherbak I, Soo HK, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Teixeira E, Thorburn P, Timlin D, Travasso M, Rötter RP, Waha K, Wallach D, White JW, Williams JR, Wolf J (2015) Statistical analysis of large simulated yield datasets for studying climate effects. In Handbook of Climate Change and Agroecosystems. The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments (eds Hillel D, Rosenzweig C). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. pp. 279-295. doi:10.1142/9781783265640_0011.

[53] Martre P, He J, Le Gouis J, Semenov MA (2015) In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management. Journal of Experimental Botany, 66: 3581-3598. doi:10.1093/jxb/erv049.

[52] Martre P, Wallach D, Asseng S, Ewert F, Jones JW, Rötter RP, Boote KJ, Ruane AC, Thorburn PJ, Cammarano D, Hatfield JL, Rosenzweig C, Aggarwal PK, Angulo C, Basso B, Bertuzzi P, Biernath C, Brisson N, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant RF, Heng L, Hooker J, Hunt LA, Ingwersen JC, Izaurralde RC, Kersebaum KC, Müller C, Kumar SN, Nendel C, O’Leary GJ, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle CO, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, White JW, Wolf J (2014) Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 21: 911-925. doi:10.1111/gcb.12768

[51] Vincent J, Martre P, Gouriou B, Ravel C, Dai Z, Petit J-M, Pailloux M (2015). RulNet: A web-oriented platform for regulatory network inference, application to wheat –omics data. PLoS ONE, 10, e0127127. doi:10.1371/journal.pone.0127127.

2014

[50] Aguirrezábal L, Martre P, Pereyra-Irujo G, Mercedes Echarte M, Izquierdo N (2014) Improving grain quality: ecophysiological and modeling tools to develop management and breeding strategies. In: Crop physiology. Applications for genetic improvement and agronomy, 2nd editions.(eds Sadras V, Calderini D) pp 423-465. London, UK, Academic Press. doi:10.1016/B978-0-12-417104-6.00017-0

[49] Challinor A, Martre P, Asseng A, Ewert F, and Thornton PK (2014). Making the most of climate impacts ensembles.  Nature Climate Change, 4: 77-80. doi:10.1038/nclimate2117

[48] Gaju O, Allard V, Martre P, Le Gouis J, Moreau M, Bogard M, Hubbart S, and Foulkes MJ (2014) Nitrogen partitioning and remobilization in relation to leaf senescence in wheat cultivars. Field Crops Research, 155: 213-223. doi:10.1016/j.fcr.2013.09.003

[47] Martre P, Quilot-Turion B, Luquet D, Ould-Sidi Memmah M-M, Chenu K, Debaeke P (2014) Model-assisted phenotyping and ideotype design. In: Crop physiology. Applications for genetic improvement and agronomy, 2nd editions. (eds Sadras V, Calderini D) pp 349-373. London, UK, Academic Press. doi:10.1016/B978-0-12-417104-6.00014-5

[46] Ravel C, Fiquet S, Boudet J, Dardevet M, Vincent J, Merlino M, Michard R, Martre P (2014) Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunit. Frontiers in Plant Science, 5: Article 621. doi:10.3389/fpls.2014.00621

2013

[45] Allard V, Martre P, Le Gouis J (2013) Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status. European Journal of Agronomy, 46: 68-76. doi:10.1016/j.eja.2012.12.004

[44] Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane A, Boote KJ, Thorburn P, Rötter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker JE, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle CO, Stratonovitch P, Streck T, Supit I, Travasso M, Tao F, Waha K, Wallach D, White JW, Wolf J (2013) Uncertainties in simulating wheat yields under climate change. Nature Climate Change, 3: 827-832. doi:10.1038/nclimate1916

[43] Bogard M, Allard V, Martre P, Heumez E, Snape JW, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2013) Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Molecular Breeding, 31: 587-599. doi:10.1007/s11032-012-9817-5

[42] Majoul-Haddad T, Bancel E, Martre P, Triboi E, Branlard G(2013) Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. Journal of Cereal Science, 57: 486-495. doi:10.1016/j.jcs.2013.02.003.

[41] Plessis A, Ravel C, Bordes J, Balfourier F, Martre P (2013). Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. Journal of Experimental Botany, 64: 3627-3644. doi:10.1093/jxb/ert188

[40] Vincent J, Dai ZW, Ravel C, Agier M, Mouzeyar S, Bouzidi FM, Martre P (2013) dbWFA: a web-based database for functional annotation of wheat transcripts. Database, bat014. doi:10.1093/database/bat014

2012

[39] Allard V, Veisz O, Kõszegi B, Rousset M, Le Gouis J, Martre P (2012) The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. Journal of Experimental Botany, 63: 847-857. doi:10.1093/jxb/err316

[38] Bertheloot J, Andrieu B, Martre P (2012) Light-nitrogen relationships within reproductive wheat canopy are modulated by plant modular organization. European Journal of Agronomy, 42: 22-33. doi:10.1016/j.eja.2012.03.005

[37] Ferreira MSL, Martre P, Mangavel C, Girousse C, Rosa NN, Samson M-F, Morel M-H (2012) Physicochemical control of durum wheat grain filling and glutenin polymer assembly under different temperature regimes. Journal of Cereal Science, 56: 58-66. doi:10.1016/j.jcs.2011.11.001

[36] He J, Le Gouis J, Stratonovitch P, Allard V, Gaju O, Heumez E, Orford S, Griffiths S, Snape JW, Foulkes MJ, Semenov MA, Martre P (2012) Simulation of environmental and genotypic variations of final leaf number and anthesis date for wheat. European Journal of Agronomy, 42: 11-21. doi:10.1016/j.eja.2011.11.002

[35] Maire V, Martre P, Kattge J, Gastal F, Esser G, Fontaine S and Soussana J-F (2012) The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE, 6: e38345. doi:10.1371/journal.pone.0038345

[34] Moreau D, Allard V, Gaju O, Le Gouis J, Foulkes MJ, Martre P (2012) Acclimation of leaf nitrogen to vertical light gradient at anthesis in Triticum aestivum is a whole plant process that scales with the size of canopy. Plant Physiology, 160: 1479-1490. doi:10.1104/pp.112.199935

2011

[33] Bogard M, Jourdan M, Allard V, Martre P, Perretant MP, Ravel C, Heumez E, Orford S, Snape J, Griffiths S, Gaju O, Foulkes J, Le Gouis J (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. Journal of Experimental Botany, 62: 3621-3636. doi:0.1093/jxb/err061

[32] Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths S, Reynolds MP (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany, 62: 469-486. doi:10.1093/jxb/erq300

[31] Gaju O, Allard V, Martre P, Snape J, Heumez E, Le Gouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, and Foulkes J (2011) Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Research, 123: 139-152. doi:10.1016/j.fcr.2011.05.010

[30] Martre P, Bertin N, Salon C, Génard M (2011) Modelling the size and composition of fruit, grain, and seed by process-based simulation models (Tansley Review). New Phytologist, 191: 601-618. doi:10.1111/j.1469-8137.2011.03747.x

[29] Martre P, He J, Le Gouis J, Allard V, Gaju O, Orford S, Heumez E, Griffiths S, Snape JW, Foulkes MJ, Semenov MA (2011) A system approach to wheat phenology: simulation of environmental and genetic variations of leaf number and anthesis date. Aspects of Applied Biology, 107: 9-18

[28] Tasleem-Tahir A, Nadaud I, Girousse C, Martre P, Marion D, Branlard G (2011) Proteomic analysis of peripheral layers during wheat (Triticum aestivum L.) grain development. Proteomics, 11: 371-379. doi:10.1002/pmic.201000333

2010

[27] Bertin N, Martre P, Genard M, Quilot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. Journal of Experimental Botany, 61: 955-967. doi:10.1093/jxb/erp377

[26] Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J-M, Jeuffroy M-H, Gate P, Martre P, Le Gouis J (2010) Deviations from the grain protein concentration – grain yield negative relationship are highly correlated to post-anthesis N uptake in winter wheat. Journal of Experimental Botany, 61: 4303-4312. doi:10.1093/jxb/erq238

[25] Ferrise R, Triossi A, Stratonovitch P, Bindi M, Martre P (2010) Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research, 117: 245-257. doi:10.1016/j.fcr.2010.03.010

[24] Nadaud I, Girousse C, Debiton C, Chambon C, Bouzidi MF, Martre P, Branlard G (2010) Proteomic and morphological analysis of early stages of wheat grain development. Proteomics, 10: 2901-2910. doi:10.1002/pmic.200900792

2009

[23] Aguirrezábal, L., Martre, P., Pereyra-Irujo, G., Izquierdo, N., Allard, V., 2009. Management and breeding strategies for the improvement of grain and oil quality. In: Sadras, V.O., Miralles, D.J. (Eds.), Crop Physiology. Applications for Genetic Improvement and Agronomy Academic Press, San Diego, pp. 387-421DOI: doi:10.1016/B978-0-12-374431-9.00016-5

[22] Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G (2009) Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiology, 151: 2133-2144 doi:10.1104/pp.109.146076

[21] Semenov MA, Martre P, Jamieson PD (2009) Quantifying effects of simple wheat traits on yield in water-limited environments using a modelling approach. Agricultural and Forest Meteorology, 149: 1095-1104. doi:10.1016/j.agrformet.2009.01.006

2008 

[20] Bertheloot J, Andrieu B, Fournier C, Martre P (2008) A process-based model to simulate nitrogen distribution in wheat (Triticum aestivum) during grain-filling. Functional Plant Biology 35: 781-796. doi:10.1071/FP08064

[19] Bertheloot J, Martre P, Andrieu B (2008) Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology 148: 1707-1720. doi:10.1104/pp.108.124156

2007

[18] Martre P, Semenov MA, Jamieson PD (2007) Simulation analysis of physiological traits to improve yield, nitrogen use efficiency and grain protein concentration in wheat. In: Spiertz JHJ, Struik PC, Van Laar HH (eds) Scale and Complexity in Plant Systems Research, Gene-Plant-Crop Relations. Springer, The Netherlands, pp 181-201. ISBN: 978-1-4020-5905-6

[17] Semenov MA, Jamieson PD, Martre P (2007) Deconvoluting nitrogen use efficiency in wheat: A simulation study. European Journal of Agronomy, 26: 283-294. doi:10.1016/j.eja.2006.10.009

2006

[16] Martre P (2006) Modelling quality traits and their genetic variability for wheat - Preface. European Journal of Agronomy, 25: 75-78. doi:10.1016/j.eja.2006.04.001

[15] Martre P, Jamieson PD, Semenov MA, Zyskowski RF, Porter JR, Triboi E (2006) Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy, 25: 138-154. doi:10.1016/j.eja.2006.04.007

[14] Ravel C, Nagy IJ, Martre P, Sourdille P, Dardevet M, Balfourier F, Pont C, Giancola S, Praud S, Charmet G (2006) Single nucleotide polymorphism, genetic mapping, and expression of genes coding for the DOF wheat prolamin-box binding factor. Functional & Integrative Genomics, 6: 310-321. doi:10.1007/s10142-006-0022-7

[13] Triboi E, Martre P, Girousse C, Ravel C, Triboi-Blondel A-M (2006) Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. European Journal of Agronomy, 25: 108-118. doi:10.1016/j.eja.2006.04.004

2005

[12] Charmet G, Robert N, Branlard G, Linossier N, Martre P, Triboi E (2005) Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat grain. Theoretical and Applied Genetics, 111: 540-550. doi:10.1007/s00122-005-2045-1

2004

[11] North GB, Martre P, Nobel PS (2004) Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave deserti in wet, dry, and rewetted soil. Plant, Cell & Environment, 27: 219-228. doi:10.1111/j.1365-3040.2003.01137.x

2003

[10] Triboi E, Martre P, Triboi, AM (2003) Environmentally-induced changes of protein composition for developing grains of wheat are related to changes in total protein content. Journal of Experimental Botany 54: 1731-1742. doi:10.1093/jxb/erg183

[9] Martre P, Porter JR, Jamieson PD, Triboi E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiology, 133: 1959-1967. doi:10.1104/pp.103.030585

2002

[8] Martre P, North GB, Bobich EG, Nobel PS (2002) Root deployment and shoot growth for two desert species in response to soil rockiness. American Journal of Botany, 89: 1933-1939. doi:10.3732/ajb.89.12.1933

[7] Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology, 130: 2101-2110. doi:10.1104/pp.009019

2001

[6] Martre P, Cochard H, Durand JL (2001) Hydraulic architecture and water flow in growing grass tillers (Festuca arundinacea Schreb.). Plant, Cell & Environment, 24: 65-76. doi:10.1046/j.1365-3040.2001.00657.x

[5] Martre P, Durand JL (2001) Quantitative analysis of vasculature in the leaves of Festuca arundinacea (Poaceae): Implications for axial water transport. International Journal of Plant Sciences, 162: 755-766. doi:10.1086/320786

[4] Martre P, Lacan D, Just D, Teisson C (2001) Physiological effects of temporary immersion on Hevea brasiliensis (Müll. Arg.) callus. Plant Cell, Tissue, and Organ Culture, 67: 25-35. doi:10.1023/A:1011666531233

[3] Martre P, North GB, Nobel PS (2001) Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiology, 126: 352-362. doi:0.1104/pp.126.1.352

2000

[2]Martre P, Durand JL, Cochard H (2000) Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytologist, 146: 235-247. doi:10.1046/j.1469-8137.2000.00641.x

1999

[1] Martre P, Bogeat-Triboulot MB, Durand JL (1999) Measurement of a growth-induced water potential gradient in tall fescue leaves. New Phytologist, 142: 435-439. doi:10.1046/j.1469-8137.1999.00405.x