Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal MUSE Supagro 3BCar Labex IM2E

Laboratory of Environmental Biotechnology

Zone de texte éditable et éditée et rééditée

Microbial bioelectrochemical systems and electro-fermentation

Bioelectrochemical systems (BES) are electrochemical processes in which the oxidation reaction at the anode and /or reduction at the cathode is catalysed by microorganisms. The most famous example of these processes is the microbial fuel cell (MFC), in which the treatment of organic effluents is coupled to the production of electricity. But the potential applications of these processes are very diverse, from H2 to platform molecules production, and there is an increasing interest from researcher for this topic for the last 15 years.

The microorganisms catalyzing the reactions in the BES exchange electrons with the electrodes that they use as an electron acceptor in the case of oxidation reactions at the anode, or as an electron donor in the case of cathodic reactions. They are most often structured in biofilms on the electrode and are qualified as electroactive. One of the limiting factors in BES is the difficulty in controlling the formation of an efficient and time-stable biofilm on the electrodes.

Copyright: LBE

BES are used in the LBE as models for the study of microbial interactions and for the development of eco-engineering strategies for microbial ecosystems.

We are particularly interested in the formation of biofilm on graphite electrodes through the choice and preparation of the inoculum depending on the reaction to be catalyzed and the operating conditions, the development of enrichment strategies or the reconstruction of biofilms from pure strains. In the case of complex substrates, it is also important to study the interactions between the biofilm and the planktonic community.

A recent development of this work is the electro-fermentation in which polarized electrodes are used to orient and control fermentation processes which take place in the reaction medium and not on the electrodes as in the case of the BES (Moscoviz et al. , 2016). This research also opens nice perspectives on the study of inter-species electron transfer  (Moscoviz et al., 2017).


  • Moscoviz, R., de Fouchécour, F., Santa-Catalina, G., Bernet, N., Trably, E. (2017) Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation. Scientific Reports, 7, 44334. DOI:10.1038/srep44334
  • Moscoviz, R., Toledo-Alarcon, J., Trably, E., Bernet, N. (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends in Biotechnology, 34(11), 856-865. DOI:10.1016/j.tibtech.2016.04.009
  • Pierra, M., Carmona-Martínez, A.A., Trably, E., Godon, J.J., Bernet, N. (2015) Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms. Bioelectrochemistry, 106, 221-225. DOI:10.1016/j.bioelechem.2015.02.003.
  • Pierra, M., Carmona-Martínez, A.A., Trably, E., Godon, J.J., Bernet, N. (2015). Microbial characterization of anode-respiring bacteria within biofilms developed from cultures previously enriched in dissimilatory metal-reducing bacteria. Bioresource Technology, 195, 283-287. DOI:10.1016/j.biortech.2015.07.010
  • Carmona Martinez, A., Trably, E., Milferstedt, K., Lacroix, R., Etcheverry, L., Bernet, N. (2015). Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater. Water Research, 81, 149-156. DOI : 10.1016/j.watres.2015.05.041


Nicolas Bernet and Eric Trably